Nano-TiO2 Coatings for Limestone: Which Sustainability for Cultural Heritage?

نویسندگان

  • Anna Maria Ferrari
  • Martina Pini
  • Paolo Neri
  • Federica Bondioli
چکیده

The present study concerns the ecodesign of the application of an aqueous nano-TiO2 suspension on a porous limestone used in historical monuments with a spraying system through the LCA methodology, in order to define the most critical aspects of the process and to try to minimize the environmental burden during the implementation of the application process. Because of the limited knowledge currently available regarding the effects that nano-TiO2 may have on the environment or human health, a precautionary approach has been adopted in all life cycle steps, to assess the risk of having nanoparticle emissions from a nanocoating surface and for workers, who can come into contact with or inhale the nanoparticles released. The energy-intensive operations in the application stage greatly contribute to the total environmental damage, while the impact generated by nanoparticle emissions during the use phase contributes 2.9%. In addition, the self-cleaning and de-polluting transparent titania coating produces a benefit of −0.13%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preservation of York Minster historic limestone by hydrophobic surface coatings

Magnesian limestone is a key construction component of many historic buildings that is under constant attack from environmental pollutants notably by oxides of sulfur via acid rain, particulate matter sulfate and gaseous SO(2) emissions. Hydrophobic surface coatings offer a potential route to protect existing stonework in cultural heritage sites, however, many available coatings act by blocking...

متن کامل

TiO2 nano-particle effect on the chemical and physical properties of Ni-P-TiO2 nanocomposite electroless coatings

TiO2 nano-particles were used in electroless plating bath to obtain Ni/P/nano-composite coatings. The coatings were heat treated at 200, 400, 600 and 700 oC and their chemical and physical properties were investigated and it was found that 400 oC was the optimum temperature for the heat treatment of the coatings. The micro-hardness test of coatings showed that t...

متن کامل

Investigation of Tribological Behavior of Electrodeposited Cr, Co-Cr and Co-Cr/TiO2 Nano-Composite Coatings

Electrodeposition is a simple and economic technique for precision coating of different shaped substrates with pure metal, alloy or composite films. Dc electrodeposition was used to produce Cr, Co-Cr and Co-Cr/TiO2 nano-composite coatings from Cr(III) based electrolytes onto 316L SS substrates. The effects of TiO2 nanoparticles concentration on co-deposition of these particles along with Cr con...

متن کامل

Poly(hydroxyalkanoate)s-Based Hydrophobic Coatings for the Protection of Stone in Cultural Heritage

Reversibility is a mandatory requirement for materials used in heritage conservation, including hydrophobic protectives. Nevertheless, current protectives for stone are not actually reversible as they remain on the surfaces for a long time after their hydrophobicity is lost and can hardly be removed. Ineffective and aged coatings may jeopardise the stone re-treatability and further conservation...

متن کامل

Study on cerium-doped nano-TiO2 coatings for corrosion protection of 316 L stainless steel

Many methods have been reported on improving the photogenerated cathodic protection of nano-TiO2 coatings for metals. In this work, nano-TiO2 coatings doped with cerium nitrate have been developed by sol-gel method for corrosion protection of 316 L stainless steel. Surface morphology, structure, and properties of the prepared coatings were investigated by X-ray diffraction, X-ray photoelectron ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015